Can an Islamic Model of Housing Finance Cooperative
Elevate the Economic Status of the Underprivileged?

M. Shahid Ebrahim
University of Nottingham, U.K.

This Version: September 3, 2008.

Acknowledgments: This paper was refined during my sabbatical study at James Madison University (JMU). I appreciate the hospitality of JMU particularly that of Ehsan Ahmed. I am also grateful to the following individuals for their helpful comments: Bruce Brunton, Humayon Dar, Mohammad Omar Farooq, Diana Mitlin, Kelly Morris, Peter Oliver, Barkley Rosser, Peer Smets, Ghulam Sorwar, Rafal Wojakowski, Robert Young, participants of the seminar at James Madison University, University of Birmingham, the 2006 Conference on Computing in Economics and Finance (in Cyprus), the 2007 IIUM International Conference (in Malaysia), the 2007 Product Development and Management Association Conference (in Bangalore, India), the 2008 International Conference on Business and Finance (in Hyderabad, India), and the 2008 International AREUEA Conference (in Istanbul, Turkey) on earlier drafts of the paper. All remaining errors are mine.

Correspondence Address: Professor M. Shahid Ebrahim
Chair in Financial Economics
Nottingham University Business School
Jubilee Campus, Wollaton Road
Nottingham NG8 1BB
United Kingdom
Tel: +44 (0) 115 846 7654
Fax: +44 (0) 115 846 6667
E-Mail: m.shahid.ebrahim@nottingham.ac.uk
Can an Islamic Model of Housing Finance Cooperative
Elevate the Economic Status of the Underprivileged?

Abstract: This paper investigates a special form of cooperative mortgage financing practiced in Oman. We integrate the literature of Mortgage Design with that of ROSCAs/ ASCRAs to illustrate that this mode of financing dissipates credit risk better than the formal mode of financing. It is also resilient to volatility of interest rates and accommodates prepayments without any additional charges. Finally, we verify the assertions of Besley et al. (1994) and Hart and Moore (1998) that cooperative mortgages are *pareto-superior* to formal mortgages in special cases. A manager of a cooperative is thus urged to diligently structure its portfolio to internally generate a capital surplus essential for sustaining its growth and ultimately improving the economic status of the underprivileged.

JEL Classification Codes: C63 (Computational Techniques)
G21 (Banks − Mortgages)
G32 (Financing Policy − Capital and Ownership Structures)
O17 (Formal and Informal Sectors; Institutional Arrangements)
P13 (Cooperative Enterprises)
R22 (Other Housing Demand)

Key Words: ASCRA, Asset Bubble, Mutual Bank, Inflation, Mortgage Design, and ROSCA.
I. Introduction

The profound argument made by Stiglitz (1994) is that market failure is a fundamental cause of poverty and financial market failures, which mainly arise from market imperfections, asymmetric information and the high fixed costs of small-scale lending, limit the access of the poor to formal finance, thus pushing the poor to the informal financial sector or to the extreme case of financial exclusion. In addition, it is argued that improving the access of the poor to financial services enables these agents to build up productive assets and enhance their productivity and potential for sustainable livelihoods (World Bank 2001). Hence the bottom line argument is that improving the supply of financial services to the poor can directly contribute to poverty reduction (Jalilian and Kirkpatrick, 2002).

(Green, Kirkpatrick and Murinde, 2005, p. 19)

Housing plays a vital role in the economy (see Sheng, 1997). This is due to its following attributes: First, a home is both consumption good as well as an investment (see Malpezzi, 1990). The investment aspect of homeownership helps to increase wealth (i.e., reduces poverty – see Buckley, 1994; Englehardt, 1994; Sheng, 1997; Haurin et al., 2002). Second, Homeowners support their neighborhood more than renters, as they participate in crime prevention and support public schools. They are better citizens and vote at a higher rate (see Haurin et al., 2002). Homeownership fosters investment in local amenities and social capital, thus enhancing the status and quality of the community (see DiPasquale and Glaeser, 1999). Policy makers therefore have an obligation of ensuring access to this indispensable asset through an efficient financial intermediation system.1

The current subprime mortgage crisis emanating in the U.S. has highlighted the plight of the poor and minorities (see Ip and Paletta, 2007 and Knight, 2007).2 This is because these underprivileged families found themselves excluded from prime lenders (under the jurisdiction of U.S. Federal banking regulations) due to being perceived as risky. Instead, they fell prey to

1 The financial intermediation system has the capacity of rendering the economy vulnerable to risk, as it connects real estate prices with the macro-economy (see Glaeser, 2000). This is because:
 (i) Regional home bubbles have negative impact on residential investment and thus aggregate output (see Higgins and Osler, 1998).
 (ii) A sharp fall in house prices leads to a reduction in consumption (through the wealth effect – see Case et al., 2005).
 (iii) A significant decline in home prices leads to foreclosures and losses for lenders, thus straining the banking system (see Case, 2000).
 (iv) Endogenous developments in the credit markets are amplified and transmitted to the macro-economy (through the financial accelerator effect – see Bernanke et al., 1999; and Aoki et al. 2004).

It is therefore imperative to design an efficient housing finance system to mitigate the vulnerability of the economy to risk (as discussed above). It also leads to a reduction in home prices relative to income, and bestows numerous economic benefits (see Malpezzi, 1990; Renaud 2005).

2 Note that subprime loans imply loans to borrowers who have sketchy credit history and are financially strapped or lack adequate income to qualify for a standard mortgage. They are thus lower in quality to prime loans.
unscrupulous lenders (outside the purview of these regulators), who used deceptive tactics to sell Adjustable Rate Mortgages (ARMs) with low introductory "teaser" rates using relaxed underwriting standards. The gullible poor, thus, received a rude shock in terms of high interest rates at the expiration of the introductory one. This caused them to fall behind their mortgage obligations and subject to foreclosure proceedings. Estimates are that around 2.4 million American families will lose their homes, thereby wiping out their meager life savings (in the form of equity), thus exposing them to a life of abject poverty (see Economist, 2007a; Gapper, 2007; and Mason and Rosner, 2007).

The repercussions of the subprime "woes" are being felt both domestically as well as overseas. The International Monetary Fund estimates the total losses and write downs to reach $945bn (see Guha, 2008). These include the following: (i) Loss in market value of around $273 billion of bonds associated with subprime mortgages, devastating the capital base of major financial institutions on both sides of the Atlantic (see Economist 2008; and Guha, 2008); (ii) Failure of more than 40 subprime lenders (see Authers, 2007); (iii) Increase in supply of homes for sale (due to repossession) thereby depressing their prices and negatively impacting on the construction sector and sales of durable goods (see Economist, 2007b; Spector, 2007); (iv) Refusal of U.S. government sponsored agencies such as Fannie Mae and Freddie Mac to deal with existing subprime lenders for purchase of loans or for serving as a primary service provider (see Economist 2007c); (v) Scrutiny of the remaining subprime lenders from state and federal regulators (see Ip and Paletta, 2007); (vi) Tightening of credit to firms (in other industries, hedge funds, private equity groups etc.) is anticipated to lead to a recession in the U.S. and a decline in

3 In general, ARMs are not appropriate for households with a large mortgage, volatile income, high default cost or low moving probability (see Campbell and Cocco, 2003).

4 Moral Hazard on the part of mortgage originators played a key role in the ongoing crisis. This is attributed to two major weaknesses of securitization. First, it encouraged careless lending (using ad-hoc standards based on loan-to-value ratio, payment-to-income ratio and credit guarantees). This allowed originators to conceal and convey the risk of the underlying properties to the lenders. The rating agencies, who were supposed to confirm the inherent risk of the mortgages, failed to do so due to the conflict of interest. This is because they were paid by the sellers of the securities as opposed to the buyers. Second, securitization allowed mortgage originators to get around their reserve capital requirements. This allowed them (and their off-balance-sheet vehicles) to lever up (see Crook, 2008).

Furthermore, in some cases, real estate professionals in the mortgage supply chain (such as real estate agents and appraisers to underwriters, lenders and lawyers) colluded to defraud the system. The FBI has launched an investigation dubbed as "Operation Malicious Mortgage" and has indicted 406 defendants in 144 cases involving $1bn in losses (see Kirchgaessner and Weitzman, 2008).

Finally, the credit guarantees also evaporated when the insurers themselves bought "tainted" assets like Collateral Debt Obligations (CDO's) backed by subprime loans.
value of American assets (see White et al. 2007); 5 (vii) Spreading of systemic problems from the U.S. to overseas, increasing capital market volatility, and "crimping" world growth (see Economist, 2007b; Gapper 2007).

The purpose of this paper is to present a novel way of home financing, using leverage endogenously amongst underprivileged aspiring homeowners (via a housing finance cooperative). This is radically different from the formal exogenous form of financing via an intermediary (such as a bank, Savings and Loan Association or a mortgage company – see Jaffee and Renaud 1997). Our goal in calling for the formulation of a specialized institution ("circuits") catering to help aspiring homeowners is in contrast to the trend towards integrating formal mortgage underwriters with capital markets (see Diamond and Lea, 1992; and Jaffee and Renaud, 1997). 6 This is because the formal system is onerous to the underprivileged (as they are perceived as risky) and has disappointed them even in developed countries such as the U.S. (as discussed above), as it constitutes a market failure. Furthermore, inflationary shocks (or volatility of interest rates) on formal mortgages can create such a tilt in real payments that those aspiring to purchase a home are made ineligible by the income requirement imposed by financial institutions to control for credit risk (see Buckley, 1994). It is therefore not surprising that formal intermediaries are not used by more than 70%-80% of home owners in developing world (see Okpala, 1994; and Ferguson, 1999).

The rationale behind the low underwriting rate of formal intermediaries (in the developing economies) is attributed by Jaffee and Renaud (1997) to the high costs of lending, especially when property rights, foreclosure procedures (needed for real estate to serve as collateral) and accurate method of valuing property are not well established. Another strand of the literature (stemming from housing micro-finance) holds two factors primarily responsible for deterring (the underprivileged) from gaining access to formal mortgage finance (see Ferguson, 1999). One is the lack of affordability to legal buildings, as most of the dwellings in low-income settlements do not comply with building regulations nor do they have formal land titles. This deters formal

5 The decline in the value of the U.S. dollar has led to an increase in the price of oil, gold and other commodities (denominated in the U.S. currency). This has impacted on the cost of food production, as it increased fertilizer prices, fuel for tractors and farm machinery, pesticides (which depend on oil prices). It has also diverted the use of arable land for the production of biofuels. Thus, in the face of increasing demand from a global population (emanating especially from the developing world) in conjunction with a drought in grain-producing areas (of the developed world), food prices have skyrocketed. Thus, the subprime crisis has given way to the twin crisis of commodity and food inflation destabilizing the existing global social order (see Guardian, 2008).

6 The rationale generally used against special “circuits” is as follows:
 (i) They are not free-market oriented (i.e., they are dependent on government subsidies); or
 (ii) They expose these specialized institutions to an inordinate amount of risk, as they are not well diversified, use a short funding strategy and tend to be fragile when subjected to economic shocks.
institutions from lending to these households. The second is the instability of income to secure repayment.

Since the goal of this paper is to establish a basic framework to increase the affordability of legal (formal) buildings, we assume that the government has already laid the necessary infrastructure of the following: (i) Law and Regulation, (ii) Information, (iii) Risk pricing, (iv) Payment and Settlement, and (v) Financial Stability (see Renaud, 2005). This assumption stems from the research that organizations and structure of the financial system plays a crucial role in the quality and rate of economic growth (see Goldsmith, 1969; and Renaud, 2005). We also assume that prospective home-owners have stable incomes. We refrain from delving in the micro-financing of progressive housing (where households acquire land through purchase or invasion, thereby improving the structure and legal tenure incrementally and lobby for basic services), as the cost of micro-financing is higher than conventional banks and thus still burdensome to the underprivileged (see Ferguson, 1999). Furthermore, this system of micro-financing is not sustainable in the long-run due to high rates of default, as the mortgages are priced in an ad-hoc manner (see Lee, 1995). Finally, the deficiencies of the progressive housing have been highlighted by a noted scholar in the area as follows:

In case of pavement-dwellers, for example, the constant threat of impending demolition means that over a twenty-year period, the very poorest of households spend the equivalent of the deposit on a loan and interest payments sufficient to buy a 60 square metre house. Low-income households are, therefore, building expensive but low-quality housing. Moreover, they are not constructing in a manner which enables them to accumulate a valuable asset. Each household makes small improvements when they can afford to do so by recourse to informal finance, often at very high interest rates. Consequently, while each household invests considerable sums in housing construction, over time they get less for their money.

(Patel, 1999, p. 159)

Thus, after establishing a basic framework to increase affordability of a formal home, we plan to extend it to the issue of income instability in future research.

The motivation behind our call for the establishment of cooperative financing institutions stems from the ad-hoc practice of clans in Oman to fund the purchase of homes of their poor brethren with gratuitous (interest-free) loans (termed as gard hasan). These are funded through an institution along the lines of an Islamic endowment or trust (termed as waqf; plural: awqaf)

7 This custom of the Omanis stems from the holy Qur’an, which exhorts Muslims to lend without interest classifying it as a loan to God Himself (see 2:245, 5:13, 57:11, 57:18, 64:17, 73:20). This is reinforced in the tradition of Prophet Muhammad (PBUH) which ranks interest free loans higher than voluntary charity (sadaqah) (see Sunan Ibn Majah, Book of Ahkam, Chapter on Loan). For more information on this issue see Farooq (2007).
which blends features of philanthropy with social service. The seed funding for this institution emanates from the cash contributions of well-to-do clan members from supplementary charitable sources of *infaq* (voluntary charity for a specific purpose) or *sadaqah* (voluntary charity) (see Cizakca, 2000). Bremer (2004) classifies this as a rebirth of the *waqf* model and explains it as follows:

Charities have played many critical functions in Islamic societies and have contributed to making these societies more just and fair through a number of mechanisms, in addition to the obvious one of providing service to the poor. Over and above their role in delivering services, Islamic charities served as a mechanism for narrowing social distances and reducing inequalities. Charities have particularly, served as a bridge between the haves and have-nots. They have provided a means by which the wealthier elements of society interact with poor individuals, came to know them as individuals, and recognize their obligations to assist them in combating poverty, its causes and effects. This linkage helps to keep low-income groups from becoming isolated from the social mainstream, strengthening the overall social order.

Charities, particularly *awqaf*, provided a source of support for institutions and interest groups independent of, and sometimes in opposition, to the state.

Islamic charities historically have played an additional role in society, that of promoter of decentralized economic development. Whether the charity is a *waqf* in the medieval Levant establishing commercial centers or building a khana for traveling business people, or an Indonesian zakat-funded charity teaching business management skills in today’s Indonesia, Islamic charities have been actively engaged in economic development for centuries. In this respect, they reflect the blending of the religious and the secular, the social and the economic that is the key characteristic of the Islamic idea.

(Bremer, 2004, pp. 5-7)

She explicates the last sentence further in a footnote as follows:

This combination can be found present in the West in urban development-oriented civil society, as well, such as pro-poor non-profits that address inner-city economic development and civic business associations that promote the development of their respective cities. Generally, however, the mix of economic development and social service with charity is much more developed in the tradition of Islamic charities than in the more "purely" charitable tradition of Western society.

(Bremer, 2004, Footnote 4, p. 7)

The above stated ad-hoc practice of clans in Oman is also in accordance with the prognosis of King and Levine (1993) and Levine (1997), as it facilitates in mitigating risk and reducing transaction costs for the underprivileged masses. However, it has not been scrutinized until now by academics, as the data on this form of financing is not in the public domain and hard to obtain. We are aware of this practice through our interaction with the numerous Omanis. Thus, the specific issues of concern of this paper are as follows: (i) Can a specialized circuit (in the form of a financial cooperative – using *endogenous* leverage) alleviate credit risk better than the formal
mode of prime sector financing (using *exogenous* leverage)? (ii) Can it alleviate inflation risks better than its formal counterpart? (iii) Can it be pareto-optimal over its formal counterpart, thereby uplifting the economic status of the underprivileged and stimulating economic development?

The *three* interrelated issues (stated above) encompass the optimal pricing of loans. This is a formidable task, as capital structure (i.e., choice of debt-equity) constitutes a major puzzle in finance (see Harris and Raviv, 1991). Typically, financial institutions (catering to the prime sector of the market) price their loans in an ad-hoc manner using credit rationing (in the form of initial loan-to-value (LTV) ratio and income ratio – see Jaffee and Stiglitz, 1990). This is not efficient, as empirically demonstrated by the literature on banking crises and real estate cycles (see Lee, 1995; Herring and Wachter, 1999; and Malpezzi and Wachter, 2002). Furthermore, it exacts a huge toll on the economy, as Renaud (2003) and Hoshi and Kashyap (2004) estimate the costs of real estate crises in Indonesia, Thailand, Japan and United States to be roughly 65%, 45%, 20% and 3% of the GDP respectively.8

We investigate the above interrelated issues by blending *two* streams in the literature. *First*, we focus on Security (Mortgage) Design, which espouses that risk management through the optimal employment of secured debt and debt maturity reduces agency costs and enhances firm value (see Stanton, 1998; and Eisdorfer, 2008).9 This view is reinforced in Ebrahim and Mathur

8 The formal financial intermediaries encounter *three* risks in the underwriting of their mortgages: credit risk, interest rate risk and liquidity risk (see Jaffee and Renaud, 1997). They mitigate (i) interest rate risk by either using a variable (adjustable) rate mortgage or by hedging through the use of derivative contracts or by securitizing mortgages (and selling them in the capital markets); and (ii) liquidity risk by securitizing the mortgages (as discussed in (i) before). However, these intermediaries have a major problem managing credit risk (through the ad-hoc use of credit rationing), as corroborated by Hester (1992) and Glauber (1992). This impacts on their ability to securitize mortgages diligently as elaborated in Footnote 4.

9 The finance literature elaborates on *two* issues pertaining to the agency costs of debt. The *first* is the risk shifting (or asset substitution) issue, where owner-manager have an incentive to transfer the downside risk (of project) to the debt holders, while benefiting from the upside potential. A number of studies such as Smith and Warner (1979 a, b) and Barclay and Smith (1995b) have illustrated that risk management through the use of secured debt alleviates this issue. Other studies such as Barnea, Haugen and Senbet (1980) and Barclay and Smith (1995a) demonstrate that debt maturity also mitigates this issue.

The second issue is the underinvestment one, where the owner-managers are motivated to reject positive net present value (NPV) projects if the wealth enhancement associated with undertaking it accrues mostly to debt holders (see Myers, 1977). Stulz and Johnson (1985) argue that secured debt can be employed to mitigate this issue.

The literature on the employment of secured debt (to mitigate risk shifting) depicts *mixed* results. On one hand, studies such as Smith and Warner (1979a, b) and Barclay and Smith (1995b) strongly support it; while on the other hand, Titman and Wessels (1988) find no evidence for it. The reasons for this discrepancy are attributed to *three* factors. *One*, secured debt is contingent on the quality of the asset being financed (see Shleifer and Vishny, 1992). *Two*, standards of underwriting debt (especially mortgages) are not scientific. They are based on ad-hoc credit rationing techniques (using initial LTV and income ratios – see Jaffee and Stiglitz, 1990). *Finally*, these ad-hoc underwriting criteria are not applied uniformly over the economic cycle (see Stanton, 1998; and Herring
(2007), who hypothesize that real estate mortgages have to be priced meticulously by adequately collateralizing them with the underlying tangible assets and income of the borrower. This condition is more stringent than the ad-hoc credit rationing ones, and ensures that the financier is not exposed to the risk of home ownership. That is, the mortgage is nearly risk-free. This condition follows from their (two period) model, that under rational expectations (symmetric information), a collateralized risk-free loan is *pareto-superior* over its risky counterpart. The rationale behind this result is as follows: In a world of symmetric information, a financier would rationally price risky mortgage to incorporate deadweight costs of default in the form of high interest rates to be transmitted to the borrower (prospective homeowner). This reduces the welfare of the homeowner. If the risky interest rate is high enough, prospective homeowners forgo a risky mortgage in lieu of a risk-free one (with a conservative debt ratio and low cost of financing). This has credence in the real world, as Singapore (which has the highest homeownership rate – of 84% in the world) does not allow excessive risk taking via mortgages on public housing units (see Edelstein and Lum, 2004).

Second, we focus on financial cooperatives, as they have played a crucial role in the economic development of Germany, United Kingdom, United States and many industrialized countries (see Shay, 1992). These originate from Accumulating Savings and Credit Associations (ASCRAs), which are interrelated to Rotating Savings and Credit Associations (ROSCAs) (see Grossman, 1992; and Bouman, 1995). Besley et al. (1993) find ROSCAs to be appealing,

10 We construe a nearly risk-free mortgage by resorting to an extremely high degree of confidence level at the underwriting stage. This pragmatic approach is empirically confirmed by Lacour-Little and Malpezzi (2003), who attest that homeowners do not "ruthlessly" default as soon as they go "underwater". They normally wait until the negative equity on their home is extremely large. Our mortgage pricing approach is also supported by the assertion of the well-known economist Lawrence Summers:

> Foreclosures are extremely costly. Between transaction costs that typically run at one-third or more of a home's value and the adverse impact on neighbouring properties, foreclosures can easily dissipate more than the total value of the home being repossessed. They also inflict collateral economic damage, as reduced wealth and diminished borrowing capacity in homes reduces consumer spending, increases credit market fragility and depresses local taxes.

(Summers, 2008, p. 11)

11 A ROSCA is basically an informal association of individuals, who pool in their resources to save. Members commit to contributing a fixed amount of money in a fund for each period in the tenure of the ROSCA. At each meeting, the entire fund is allocated to a particular member. The meetings continue with a different member of the group being granted the fund at each date. This process continues until every member of the ROSCA has received the fund once. The allocation of the fund is either through a lottery (Random ROSCA) or an auction (Bidding ROSCA).

ROSCAs are found in many parts of the world under different names such as *chit funds* in India, *jamaiyah* in Egypt, *hui* in Vietnam, *kye* in Korea, *pasanakus* in Bolivia, *paluwagon* in Philippines, *susu* in West Africa, *tanda* in Mexico, and *tontine* in Senegal, among others.
as they provide a pareto-superior solution to the problem of purchasing an indivisible (lumpy) good (such as a home). This is attributed by them to the improvement in social welfare stemming from intertemporal trade due to the mobilization of savings (under ROSCAs), which otherwise would have been idle under autarky. In contrast, Besley et al. (1994) establish that ROSCAs (in general) are less flexible and therefore less efficient than formal credit markets. However, there are special cases where a random ROSCA may increase welfare over a formal credit market due to the element of chance. Besley et al. (1994) therefore predict the decreasing role of ROSCAs with increasing economic development. It is thus a puzzle to see intermediaries with ROSCA roots (like Building Societies, Credit Unions and Mutual Savings Banks), which not only proliferate but also compete head on with for-profit intermediaries (such as Commercial Banks, Stock Savings and Loans etc.) in highly developed economies such as the Germany, U.K. and U.S. This is attributed in the literature to the (i) Inability of consumers to evaluate the quality of goods (or service) promised (or delivered) (see Hansmann, 1980); (ii) Inability of consumers to observe (or measure) the output (or benefit) (see Easley and O'Hara, 1983); (iii) Adaptability to a changing economic environment (see Emmons and Mueller, 1997); (iv) Narrowly defined activity where members have homogeneity of opinion (see Hart and Moore, 1998); (v) Mitigation of adverse selection (due to availability of adequate information on borrowers – see Buijs, 1998; and Smets, 2000); (vi) Alleviation of moral hazard (in the form of timeliness of payment and reduction of

12 The German Cooperative Banks, U.K. Building Societies, U.S. Savings and Loans Associations (S&Ls) and Credit Unions originated from ROSCAs. The German Cooperative Banks (akin to the U.S. Credit unions specializing in consumer loans) and the U.K. Building Societies (akin to the U.S. S&Ls specializing in home loans) were established in 1778 and 1781 respectively. The first U.S. S&L was chartered in Philadelphia in 1831. The early S&Ls were cooperatives, but by 1900s the bulk of them had evolved into stock (for profit) corporations. That is, they were associations in name only. The remaining S&Ls (in the Northeast and Wisconsin) retained their ROSCA roots. That is, they remained as mutual savings banks. These too succumbed to the pressures of demutualization by being bought out by commercial banks in the late 1980s and early 1990s (see Esty, 1997).

The U.S. Credit Unions were established in early 1900 (through the efforts of Alphonso Desjardins and Edward A Filene) to serve the average consumer with savings facilities and short-term loans (such as automobiles), while S&Ls focused on housing (until deregulation).

Mutual savings banks are organized differently from Credit Unions. Credit Unions are structured around "common bonds" or "fields of memberships" that are residential, professional, occupational or associational. A need for financial services (for Credit Union) does not constitute a "common bond." In contrast, mutual savings banks operate under a cooperative ownership structure and use the "need for financial services" as a "common bond" (see Emmons and Schmid, 1999).

13 ASCRAs pool savings just like ROSCAs. However, unlike ROSCAs, it accumulates them for a specific time after which it is distributed. The membership of ASCRAs is much wider than that of ROSCAs. The loan decision is not automatic but subject to the consent of a managing board. Loan administration is generally quite elaborate, necessitating the need of up-to-date records and in some cases posting of collateral (see Bouman, 1995).
default – see Buijs, 1998; and Smets, 2000); and (vii) Relatively lower administrative and transaction costs (see Buijs, 1998).

A housing finance cooperative involves a group of people, who form a society to enable them to raise funds endogenously (among themselves).\(^\text{14}\) It serves as a specialized mutual savings bank for facilitating the purchase of a lumpy good (i.e., a house) for the members of the cooperative. The member (for whom the house is being purchased) repays the principal along with lending an additional amount (in lieu of an interest payment in a formal mortgage) to the cooperative. This simultaneous action allows members to offset the cost (of borrowing) with the benefit (of lending), thus yielding a facility with a zero interest rate (assuming negligible administrative costs).\(^\text{15}\) A housing finance cooperative can thus be construed as a special form of ASCRA, which is distinct from a ROSCA. This is because in this scheme of affairs one group of members do not benefit at the expense of the others. It is the cooperative which is the sole beneficiary or the benefactor (based on the net present values (NPV) of cash flows).

We integrate the above two streams of literature thereby assuming the existence of an information architecture, where property rights, foreclosure procedures (needed for real estate to serve as collateral) and accurate method of valuing property are well established (see Levine et al. 2000; and Renaud, 2005). We initiate our study with a simple framework and extend it to study inflationary shocks as well as prepayment options.

Our efforts yield four key results described as follows. First, we optimally price both the formal (fixed rate – prime sector) mortgage as well as the cooperative home mortgage. The term "price" in our paper is used in a broad sense (consistent with Baltensperger, 1978) to include not only the interest rate (as in the formal mortgage) but also the loan-to-value ratio as well as the tenure of the facility (see also Eisdorfer, 2008). Our pricing algorithm is more scientific than the ad-hoc credit rationing constraints used currently by banks. Risk control at the micro-level is

\[^{14}\text{We assume that initial (seed) funding for a housing finance cooperative is available through either charitable sources (as stated earlier) or a mutual savings institution (such as a building society/ credit union/ mutual savings bank) or a governmental agency or a non-governmental organization (NGO) or a supranational agency like the World Bank. Once established and managed carefully, the cooperative can be self sustaining (see Buckley, 1999; Jones and Mitlin, 1999; Cizakca, 2000; and Bremer, 2004).}\]

\[^{15}\text{The current analysis ignores transaction costs, as the two mortgages are underwritten by entities, which are structured in contrasting organizational forms. A formal mortgage is typically offered by a profit-making intermediary (such as a bank or a stock-based S&L), while a cooperative mortgage is offered by a non-profit entity. Nonetheless, transaction costs in the "real world" are manifested in the above two mortgages in the form of interest rate spread and service fees respectively. The interest rate spread in a formal intermediary is priced to recompense labor/ management (in the form of salary etc.) and capital (in the form of dividends). In contrast, the service fee in a cooperative is priced to recompense the various overhead incurred such as salary of employees etc., while its management (comprised of committee members and board of directors) is on a voluntary basis (see Buijs, 1998).}\]
important to arrest the volatility at the macro-level, in accordance with the prognosis of Sheng (1997) and Renaud (2005).

Second, we realize that the lien profile of a mortgage issued by a housing finance cooperative is linear, in contrast to the concave lien profile of a formal intermediary. This helps in reducing the tenure of the *endogenous* mortgage, building up an "equity cushion" faster, alleviating credit risk and the overall cost of financing.16

Third, a housing finance cooperative is also able to control interest rate risk better than its formal counterpart. The *endogenous* use of leverage ensures that any increase in the cost of borrowing is offset by the benefit of lending. Inflationary shocks thus impact on the tenure of the cooperative facility instead of pricing out the prospective homeowner by increasing the front-end costs of owning a home (as in a formal prime sector mortgage).

Finally, we acknowledge that the gains from intertemporal trade make home financing through cooperatives *pareto-superior* [*pareto-inferior*] over its formal counterpart, depending on the characteristics of a home, that of a borrower and the underwriting standards adopted. This verifies the claim of (i) Besley et al. (1994) that efficiency of a cooperative is *mixed* when contrasted with formal credit markets; and (ii) Hart and Moore (1998) that a cooperative works well when it is focused on a limited scope of activities. This result does not incorporate the lower transaction costs of a cooperative stemming from its organization as a non-profit entity. Furthermore, we do not even incorporate: (i) the relatively low default costs (stemming from the mitigation of adverse selection and moral hazard – see Buijs, 1998; and Smets, 2000); and (ii) the prepayment advantage of a cooperative mortgage. If we were to do so, the results would overwhelmingly tilt in its favor. Nonetheless, it is a responsibility of a cooperative manager to structure its portfolio by catering to the disadvantaged (with *low* income), aspiring to purchase a home (with *low* initial value and *medium* to *high* risk) and using the following underwriting constraints: *medium* income multiplier and *high* confidence level. This would suffice in internally generating a capital surplus critical for sustaining its growth and ultimately improving the status of the underprivileged. We thus conclude that a charity funded housing finance cooperative has the potential for elevating the economic status of the underprivileged and thus stimulating economic development.

The paper is organized as follows: Sections II and III illustrate the theoretical underpinnings behind the design of both formal and cooperative mortgages to contrast their efficiencies. Finally, Section IV presents our concluding remarks.

16 The reduction in the tenure partially alleviates a problem with cooperative financing, i.e., illiquidity.
II. FORMAL (FIXED RATE – PRIME SECTOR) MORTGAGES

II.a. Model Development:

This section expounds on the mathematical design of an efficient risk-free formal mortgage (using exogenous leverage). Here, the financier has to ensure that the borrower does not transfer the asset (home) risk to him/her. This is a formidable task, as it entails controlling the conflict of interest (agency issue) between the borrower and lender. This risk reduction is accomplished by collateralizing the loan, not only with the underlying asset but also with the income of the borrower.

The basic assumptions underlying an efficient nearly risk-free mortgage are as follows:

(i) The prospective homeowner (borrower) makes an initial deposit (ID) against purchase of a home (valued initially at P_0) financed by lender at the net amount (Q_0). The terms of financing are as follows: cost of funds = r, discount rate = γ, and tenure of formal mortgage = T. This implies:

\[Q_0 = P_0 - ID \]

\[r = \left(\frac{1 - \gamma}{\gamma} \right) \]

FIGURE 1
Payments over time

We assume that homeowners have ample funds to meet the initial downpayment (ID). If this assumption is violated, then ID has to be accumulated by making $(T_1 + 1)$ periodic payments of A' in a personal account from time "$(-T_1)$" to "0". This is priced using the property of convergence of geometric series as follows:

\[ID = \sum_{i=0}^{T_1} A' (1+r)^i = \frac{A'}{r} [(1+r)^{(T_1+1)} - 1] \]

\[\Rightarrow A' = \frac{(ID/r)}{[(1+r)^{(T_1+1)} - 1]} \]

To contrast the two mortgage schemes, we select T_1 to be similar to that of the Cooperative Home Mortgage discussed in the next section (See Figure 3). This helps us contrast the tenure of "(T)" of the formal mortgage with "(T_2)" of the Cooperative alternative.

17 We assume that homeowners have ample funds to meet the initial downpayment (ID). If this assumption is violated, then ID has to be accumulated by making $(T_1 + 1)$ periodic payments of A' in a personal account from time "$(-T_1)$" to "0". This is priced using the property of convergence of geometric series as follows:
(ii) The borrower makes regular payments of amount A from time $t = 1$ to tenure $= T$ (see Figure 1) from an income stream, which is stable. This implies that the discounted value of it sums up to the amount financed (Q_0):

$$Q_0 = \sum_{i=1}^{T} A \gamma^i = A \gamma \sum_{i=1}^{T} (\gamma^{-1})^i = A \gamma \left(\frac{1-\gamma^T}{1-\gamma} \right) \quad (3)^{19}$$

Furthermore, the amount owed to lender (Q_t) at any time $t \geq 0$ is evaluated as the compounded value of initial loan (Q_0) reduced by the future value of the annuity (composed of the regular mortgage payments). That is,

$$Q_t = Q_0 (1+r)^t - \sum_{i=1}^{t} A (1+r)^{t-i}$$

Substituting the value of r from Equation (2) and simplifying the above equation, we derive:

$$Q_t = Q_0 \left(\frac{1}{\gamma} \right)^t - \sum_{i=1}^{t} A \left(\frac{1}{\gamma} \right)^{t-i} = \left(\frac{Q_0}{\gamma} \right) - \left(\frac{A}{\gamma} \right) \left[\frac{1-\frac{t}{1-\gamma}}{1-\gamma} \right]$$

Substituting the value of A from Equation (3), we derive:

$$Q_t = Q_0 \left(\frac{1-\gamma^{(T-t)}}{1-\gamma} \right) \quad (3a)^{20}$$

Figure 2 portrays Equation (3a) to illustrate that the shape of the outstanding loan amount (Q_t) with respect to time is concave.

(iii) We assume that the home prices follow a Geometric Brownian Motion (also known as a Lognormal Random Walk). This assumption is consistent with the real estate finance literature (see Szymanoski, 1994; Gau, 1987), and implies that the percentage changes in property prices are independent and identically distributed (iid). This infers that future price changes are independent of past price movements and dependent only on current price. This assumption requires all past information to be captured by the present price of a home, which is a consequence of the Efficient Market Hypothesis (EMH). This assumption helps us model the property price at time t (given in months) as follows:

$$P_t = P_0 e^{(\mu - \frac{\sigma^2}{2})t} \quad , \quad (4)$$

18 In other words, we implicitly assume that borrower's income is non-stochastic. We plan to extend our current framework to the case of stochastic income in the future.

19 The final version of the formula also uses the property of convergence of geometric series (see Hoy et al., 1996).

20 Equation (3a) is akin to the standard annuity pricing formula derived in Hayre et al. (1995).
where μ and σ (described below) are the mean and standard deviation of the monthly appreciation of the property (see Figure 2).

FIGURE 2
Asset/ Lien Value over time

Formal Mortgage

We now move to the intricate design of the formal mortgage by evaluating the endogenous parameters (Q_0, ID, T) given the exogenous parameters stemming from home characteristics (comprising of initial value $- P_0$, monthly appreciation $- \mu$, monthly risk $- \sigma$), borrower characteristics (composed of his/ her income $- y$) and underwriting constraints (Confidence Level $- x\%$ – explained below, Income multiplier $- b$ – explained below). 21

(i) **Asset Value Constraint:** The financier ascertains that the outstanding loan (Q_t) is (at least) fully collateralized by the underlying home value at an $x\%$ confidence level. That is,

$$\text{Max. Probability (} \ln(P_t) - \ln(Q_t) \text{)} \geq \frac{x}{100}$$

\[(in \ t) \]

21 These underwriting constraints are interrelated as demonstrated further in Equation (7c).
The above condition yields a safety margin, which is a multiple α of the risk ($\sigma \sqrt{t}$) and helps us evaluate the minimum initial deposit (ID_{Min}) or maximum amount of loan ($Q_0{\text{Max}}$) made by lender as follows.

$$\max \frac{\ln(P_t) - \ln(Q_t)}{\sigma \sqrt{t}} \geq \alpha \quad (in\ t)$$

$$\Rightarrow \max [\ln(P_t) - \ln(Q_t)] \geq \alpha \sigma \sqrt{t} \quad (in\ t)$$

This implies that at the optimum time t^* ($t^* \in (0, T)$):

$$\frac{1}{P_{t^*}} \left(\frac{\delta P_{t^*}}{\delta t^*} \right) - \frac{1}{Q_{t^*}} \left(\frac{\delta Q_{t^*}}{\delta t^*} \right) \geq \frac{\alpha \sigma}{2 \sqrt{t}} = \left(\frac{\alpha}{2} \right) \left(\frac{\sigma \sqrt{t}}{t} \right), \quad (5b)$$

$$Q_{t^*} \leq P_{t^*} \left(e^{-\alpha \sigma \sqrt{t^*}} \right) \quad (5c)$$

The equality sign in Equation (5b) is observed in the case of interior solution, while the inequality sign is observed for a corner solution. The first and second terms on the left hand side (LHS) of this equation comprise of the rate of change in the value of the home minus that of the mortgage. The combination of the two terms estimates the rate of change of the equity in a home. Equation (5b) basically implies that for an optimum, the combined LHS terms should be greater than or equal to $\left(\frac{\alpha}{2} \right) \times$ the rate of increase in risk of a home ($\sigma \sqrt{t}$).

For a formal home (with legal title), the first term on the LHS (of Equation (5b)) is positive, implying an appreciation over time. In contrast, for an amortizing mortgage, the second term is negative, implying depreciation in lien value over time. The combination of an appreciation term minus a depreciation term is nonetheless positive. If the mortgage is structured properly (encumbering an appreciating formal home), then one can ensure that the appreciation of equity over time is greater than or equal to $\left(\frac{\alpha}{2} \right)$ times the rate of change of risk.

22 Equation (5) implicitly assumes that the time to repossess the property upon default is zero. However, if it takes "L" months to repossess it after default, then Equations (5), (5a)–(5g), (7) and (7a) have to be modified as follows: The time periods t and t^* in the suffix of property value (P_t or P_{t^*}) have to be changed to P_{t+L} or P_{t^*+L}. The same applies to Equations (5), (5a)–(5c), (11), (11a)–(11e) and (12c)–(12d) in Section III.a.

23 The second order condition for a maximum is automatically satisfied here, as Chiang (1984) illustrates that maximization of a strictly concave and twice differentiable function (such as a natural logarithmic function) with linear constraint (given by the income one described below) yields a negative number.

24 In case of a progressive home, the first term on the LHS of Equation 5(b) may not necessarily be positive. This is because in contrast to a formal home, a progressive home serves primarily as a consumption good with questionable investment value.
of a home \(\frac{\sigma \sqrt{t}}{t}\) in the time interval \((0, T]\). Thus, Equation (5b) yields a non-binding inequality with a trivial solution \(t^* > 0\) \((\forall \sigma \mu \sigma^2)\).\(^{25}\) Simplifying Equation (5c) for \(t^* = \varepsilon > 0\), we get:

\[
Q_\varepsilon \leq P_\varepsilon \left(e^{-\alpha \sigma \varepsilon} \right)
\]

For an \(\varepsilon\), which is slightly greater than zero, \(Q_\varepsilon \approx Q_0\); \(P_\varepsilon \approx P_0\); and \(e^{-\alpha \sigma \varepsilon} \approx 1\).

This yields \(Q_0 \leq P_0\), thereby implying an LTV of 100%.

This solution poses a serious problem in the context of Shiller and Weiss (2000), as it exacerbates moral hazard on the part of a home-owner. This is because it involves a zero initial deposit (ID), which serves as a "free" call option on the value of a home. A lack of initial capital at risk does not motivate a home-owner to adequately maintain the property, as he/she has nothing to lose. It also makes it easier to walk away from the home in the event of declining home prices. Thus, to mitigate this issue of moral hazard, we curtail the LTV (i.e. \(\frac{Q_0}{P_0}\)) to a maximum, which is a simple function of safety margin such as \(e^{-\alpha \sigma}\). This yields:

\[
Q_0 \leq P_0 \left(e^{-\alpha \sigma} \right)
\]

\Rightarrow (Q_0)_{\text{Max}} = P_0 \left(e^{-\alpha \sigma} \right) \quad (5d)

Since ID = \(P_0 - Q_0\), see Equation (1)

\Rightarrow ID \geq P_0 \left[1 - e^{-\alpha \sigma} \right] \quad (5f)

\Rightarrow ID_{\text{Min}} = P_0 \left[1 - e^{-\alpha \sigma} \right] \quad (5g)

(ii) Income Constraint: The lender ascertains that the borrower has adequate income \(y\) to meet his/her mortgage commitments comprising of the monthly payments \(A\). This implies curtailing the commitments such that they are a multiple \(b\) of income of the borrower. That is,

\[
\frac{\text{Income of Borrower (y)}}{\text{Mortgage Commitments (A)}} \geq \text{Income Multiplier (b)}
\]

\Rightarrow \frac{y}{A} \geq b \quad (6)

\Rightarrow A \leq \frac{y}{b} \quad (6b)

\(^{25}\) Note that Equations (5b) and (5c) hold true during normal times, but may not hold during periods of "bubbles" defined by Kindleberger (1978, pp. 16) as "an upward price movement (of an asset) over an extended range that then implodes." The bursting of bubbles has serious implications for the macro-economy as described in Footnote 1. Financial intermediaries have to proactively reconfigure their facilities during runaway asset prices when there is a significant risk in deflation of the home price bubble. This challenging issue needs to be investigated in the future.
We can thus evaluate the optimal tenure (T) of the mortgage using Equation (3) as follows:

\[
(Q_0)_{\text{Max}} = \gamma (A)_{\text{Max}} \left(\frac{1 - \gamma^T}{1 - \gamma} \right)
\]

(3)

Substituting for the values of \((Q_0)_{\text{Max}}\) and \((A)_{\text{Max}}\) from Equations (5e) and (6c), we derive:

\[
P_0 e^{-\alpha \sigma} = \left(\frac{\gamma y (1 - \gamma^T)}{b(1 - \gamma)} \right) \leq \left(\frac{\gamma y (1 - \gamma^{T_{\text{Max}}})}{b(1 - \gamma)} \right), \quad \forall \ T \leq T_{\text{Max}}
\]

(7)

\[
\Rightarrow T \leq T_{\text{Max}} = \left\{ \frac{\ln[1 - P_0 (e^{-\alpha \sigma})b(1 - \gamma)]}{\ln[\gamma]} \right\}
\]

(7a)

For the tenure "T" to be a positive real number, the term in the square brackets "[·]" (in the numerator) comprising of the natural logarithmic function has to be positive number between 0 and 1, yielding a negative number in the numerator. The reason behind our assertion stems from the fact that the denominator \(\ln[\gamma] < 0\) as \(0 < \gamma < 1\) (see Equation (2)).

This leads us to the following constraint for the numerator:

\[
\Rightarrow 0 < [1 - \frac{P_0 (e^{-\alpha \sigma})b(1 - \gamma)}{\gamma y}] < 1.
\]

In other words,

\[
0 < \{ 1 - \frac{P_0 (e^{-\alpha \sigma})b}{\gamma y} \} r < 1 \quad (\text{using Equation 2}).
\]

(7b)

This yields the inter relationship between the two underwriting constraints after using Equations (2) and (5e):

\[
\Rightarrow 0 < b < \left[\frac{y}{r P_0} \right] (e^{\alpha \sigma}) = \frac{y}{r (Q_0)_{\text{Max}}}
\]

(7c)

Thus, the formal mortgage can be priced in terms of \([Q_0, \text{ID}, A, \text{and } T]\) given the exogenous parameters \([P_0, \mu, \sigma, \alpha, y, b, \text{and } \gamma]\) (and the satisfaction of Equation (7c)) as follows:

First, we evaluate \((Q_0)_{\text{Max}}\) using Equation (5e).

Next, we evaluate \((A)_{\text{Max}}\) using Equation (6c).

Next, we evaluate T using Equation (7a), rounding it off to the nearest integer.

Finally, we reevaluate \(Q_0\) and ID using Equations (3) and (1) respectively.

26 Note also that \(r\) cannot be zero in this framework as \(r \to 0 \Rightarrow \gamma \to 1 \Rightarrow \ln[\gamma] \to 0 \Rightarrow T \to \infty\)
II.b: Illustrative Examples.

We resort to numerical examples to elucidate the model further and to contrast the efficiency of the formal mortgage with that of its counterpart (i.e., the cooperative home mortgage) described in the following section.

Example 1 [Formal Mortgage pareto-inferior to a Cooperative Home Mortgage]:

The exogenous values of a house are incorporated from Cannon et al. (2006) as follows: \(\mu = 5.695\% \text{ year} = \frac{5.695\%}{12} \text{ month} = 0.4746\% \text{ month} \), \(\sigma = 14.845\% \text{ year} = \frac{14.845\%}{\sqrt{12}} \text{ month} = 4.2854\% \text{ month} \). We assume that the lender wants to ensure risk-free loan status at 99.9999% confidence level, i.e. \(x = 99.9999\% \). This implies \(\alpha = 4.7537 \). We further assume that \(P_0 = $100,000 \), income of borrower = \(y = $30,000/ \text{ year} = $2500/ \text{ month} \), income multiplier (b) = 3.3333, and \(r = 5\% \text{ annual} = 0.42\% \text{ monthly} \).

We first solve for \((Q_0)_{\text{Max}}, A_{\text{Max}}, \) and \(T \) using Equations (5e), (6c) and (7a) as follows:

\[
(Q_0)_{\text{Max}} = $81,569.64, \quad A_{\text{Max}} = $750/ \text{ month}, \quad \text{and} \quad T = 145.1674 \text{ months}.
\]

Rounding off \(T \) to 145 months (i.e., 12 years, 1 month) and using \(A_{\text{Max}} = $750/ \text{ month} \) yields \(Q_0 = $81,501.10 \) (from Equation (3)) and ID = $18,498.90 (from Equation 1). Note the value of \(T = 146 \) months is not feasible as it violates the upper bound of \(Q_0 \) given by Equation (5d).

Example 2 [Formal Mortgage pareto-superior to a Cooperative Home Mortgage]:

Here we retain the same exogenous parameters as in the above Example 1 with the exception of annual income of prospective borrower (\(y \)), which is selected as $20,000/ year = $1666.67/ month. This yields \((Q_0)_{\text{Max}} = $81,569.64, \quad ID = $18,430.36, \quad A_{\text{Max}} = $500/ \text{ month}, \quad \text{and} \quad T = 273.843 \text{ months} \) (from Equations (5e), (6c) and (7a)). Rounding off \(T \) to 273 months (22 years, 1 month) and using \(A_{\text{Max}} = $500/ \text{ month} \) yields \(Q_0 = $81,501.10 \) (from Equation (3)) and ID = $18,430.36 (from Equation 1).

Our model mandates a high degree of precision to make the mortgage nearly risk-free. This also impacts on the comparative efficiency of a formal mortgage vis-à-vis a cooperative mortgage, as discussed in the following section.

27 If the homeowner has insufficient downpayment (of $18,498.90), then he/she can accumulate this in either 25 months (from \(T_1 = -24 \) months to \(t = 0 \)) at $703.62/ month (from Equation (1b)) or 31 months (from \(T_1 = -30 \) months to \(t = 0 \)) at $560.27/ month (from Equation (1b)). The two values of \(T_1 \) stem from the corresponding solutions of the Cooperative Mortgage in the following section.

28 We realize similar results when we increase purchase price of a home \((P_0)/\) income multiplier (b) or decrease confidence level (\(x\%)/\) risk (\(\sigma\)). It should be noted (in the context of efficiency) that the underwriting constraints in the form of confidence level and income multiplier contradict each other.

29 Here too, the downpayment (of $18,430.36) can be accumulated in either 38 months (from \(T_1 = -37 \) months to \(t = 0 \)) at $448.63/ month (from Equation (1b)) or 73 months (from \(T_1 = -72 \) months to \(t = 0 \)) at $216.54/ month (from Equation (1b)). The two values of \(T_1 \) stem from the corresponding solutions of the Cooperative Mortgage in the following section.
9 months) and using $A_{\text{Max}} = 500/\text{month}$ yields $Q_0 = 81,434.62$ (from Equation (3)).

II.c: Extension of the Model to the Case of Inflation.

Inflation is defined as a sustained increase in the price levels for goods and services in the economy. Its causes are highly disputed in the literature, stemming from the complex and dynamic interactions of four groups of factors: monetary (demand-side) shocks, real (supply-side) shocks, inertial (price adjustment) factors, and institutional (political process) factors (see Kibritcioglu, 2001).

Inflationary expectations affect the exogenous interest rate (and the discount factor – see Equation (2)) through the Fisher Effect. However, the performance of homes during inflationary periods depends on the simultaneous impact of changes in housing stock through depreciation, obsolescence and development (see Ebrahim and Mathur, 2007). If housing stock increases [decreases] during inflationary periods, a house may underhedge [overhedge] inflationary impact. This changes the appreciation (μ) as well as the risk of it (σ). The overall impact of an inflationary shock results in a (i) marginal change in the down payment (see Equations (5e) and (5f)) and (ii) substantial increase in mortgage payment, which is restricted by income constraint (see Equation (6c)). This binding income constraint leads to either (i) an inordinate tenure of mortgage (T) or (ii) lack of solution (stemming from the violation of Equation (7c)) implying that the prospective homeowner is priced out of the property market.

II.d: Extension of the Model to the Case of Prepayment.

The prepayment provision in a formal fixed-rate mortgage constitutes of a call option, which allows home-owner to revoke his debt at any time (prior to maturity) for an amount (known in advance, which is not affected by interest rates). The real estate finance literature illustrates various ways of pricing this option either as a higher interest rate or a higher mortgage initiation fee (see Hall, 1985).

When prepayment option is priced in the form of a higher interest rate, it results in: (i) a negligible change in down payment (ID); (ii) increase in mortgage payment (A); and (iii) an increase in tenure (T).

In contrast, when the prepayment option is priced in the form of a higher initiation fee it results in: (i) a substantial increase in down payment (ID); and (ii) negligible changes in mortgage payments (A) and tenure (T).

Nonetheless, both the above methods of pricing prepayments reduce the efficiency of formal mortgages vis-à-vis Cooperative Home Mortgages as described in Section III.d.
III. COOPERATIVE HOME MORTGAGES

III.a. Model Development:

This section expounds on the mathematical design of an efficient risk-free home mortgage financed by a cooperative (using endogenous leverage). That is, a mortgage where a borrower receives interest-free funding from the cooperative members at the time of purchase of property and repays the cooperative by funding other members at the same zero rate. Here too, the cooperative ensures that its members do not transfer the asset risk to it. This entails controlling for the conflict of interest (agency issue) between the borrower and lender by collateralizing the loan, not only with the underlying asset but also with the income of the borrower.

The basic assumptions underlying an efficient (nearly) risk-free cooperative financing are as follows:

(i) On joining the association, the prospective homeowner (borrower) is required to accumulate an amount S by making periodic payments from time $t = -T_1$ (prior to purchase of house) until $t = T_2$.\(^{31}\) Here T_2 is the "real" tenure of the mortgage as explained below. These periodic payments (constituting Cooperative Dues) equal \(\frac{S}{T_1+T_2+1} \) and are used to finance properties of fellow cooperative members (see Figure 3).\(^{32, 33}\)

FIGURE 3
Payments over time

\[
\begin{array}{cccc}
\text{CD} & \text{CD} & -P_0 + \text{CD} & \text{RPP} + \text{CD} \\
-T_1 & -T_1+1 & 0 & t \\
\end{array}
\]

Note: Cooperative Dues = CD = \(\frac{S}{T_1+T_2+1} \), Regular Principal Payment = RPP = \(\frac{P_0}{T_3} \)

\(^{31}\) The amount $S (\frac{T_1+1}{T_1+T_2+1})$ is akin to an initial deposit (ID) discussed in case of formal mortgage (Section II.a). See also Equation (9a).

\(^{32}\) Note that we use the term "Cooperative Dues" in an unconventional way to denote mandatory savings (accruing at zero interest) which are credited to the principal amount at the real tenure of the mortgage (T_2) as explained below. Any regular service fees can be added to these cooperative dues. See also Footnote 38.

\(^{33}\) Cooperative Dues (CDs) paid prior to assuming a mortgage (i.e., from $t = -T_1$ to 0) help in disseminating more information on prospective borrower and to bind him/her cohesively to the cooperative (Buijs, 1998).
At \(t = 0 \), the cooperative buys a home valued at \(P_0 \) for the borrower and asks him/her to make additional principal payments of \(\frac{P_0}{T_3} \) from \(t = 1 \) to \(t = T_3 \), where \(T_3 \) is the "notional" tenure of the mortgage. Thus, at time \(t \), the gross amount owed to the cooperative equals \(P_0 (1 - \frac{t}{T_3}) \).

We further assume that at time \(t = T_2 \) the capital accumulated by the borrower to help finance fellow cooperative members (\(S \)) offsets the liability the borrower owes to the association. Thus,

\[
S = P_0 (1 - \frac{T_2}{T_3})
\]

(8)

In other words, the "real" tenure of the mortgage \((T_2) \) is lower than the "notional" tenure \(T_3 \). This helps to define the net amount owed \((Q_t) \) to the association at time \(t \geq 0 \) as follows:

\[
Q_t = P_0 - \sum_{i=1}^{t} \left(\frac{P_0}{T_3} \right) - \sum_{i=1}^{t} \left(\frac{S}{T_1 + T_2 + 1} \right), \ \forall \ t \in [0, T_2]
\]

\[
\Rightarrow Q_t = P_0 (1 - \frac{t}{T_3}) - S \left(\frac{T_1 + t + 1}{T_1 + T_2 + 1} \right)
\]

(9)

This implies:

\[
Q_0 = P_0 - S \left(\frac{T_1 + 1}{T_1 + T_2 + 1} \right)
\]

(9a)

\[
Q_{T_2} = P_0 (1 - \frac{T_2}{T_3}) - S = 0 \text{ (using Equation (8)).}
\]

(9b)

\[
\Rightarrow S = P_0 (1 - \frac{T_2}{T_3}) \Rightarrow \left(\frac{S}{P_0} \right) = (1 - \frac{T_2}{T_3})
\]

(9c)

\[
\Rightarrow \left(\frac{1}{T_3} \right) = \frac{1}{T_2} (1 - \frac{S}{P_0})
\]

(9d)

Since \(T_2 < T_3 \) as assumed above \(\Rightarrow S < P_0 \)

(9e)

Substituting the value of \(T_3 \) from Equation (9d) in Equation (9) yields:

\[
Q_t = P_0 (1 - \frac{t}{T_2}) + S \left[(\frac{t}{T_2}) - \left(\frac{T_1 + t + 1}{T_1 + T_2 + 1} \right) \right]
\]

(10)

Figure 4 portrays Equation (10) to illustrate that the shape of the outstanding loan amount \((Q_t) \) is linear with respect to time \(t \). This linear profile of \(Q_t \) is very important, as it helps borrowers to build up equity in their homes at a faster pace than a formal mortgage with a
concave profile (see also Figure 2). This feature of a cooperative mortgage is important to
the lender (the cooperative) too, as a faster build up of an "equity cushion" avoids default
better than that in the case of a formal mortgage.

(iii) Here too, we assume that home prices follow a Geometric Brownian Motion to model the
monthly property price at time t as follows:

\[P_t = P_0 e^{(\mu - \frac{\sigma^2}{2})t} \]

(4)

where \(\mu \) and \(\sigma \) are the mean and standard deviation of the monthly appreciation of the
property (see Figure 4).

FIGURE 4

Asset/ Lien Value over time

Cooperative Home Mortgage

Finally, we move to the intricate design of the cooperative home mortgage by evaluating the
endogenous parameters \((Q_0, S, T_1, T_2, T_3) \) given the exogenous parameters stemming from home
characteristics (comprising of initial value \(- P_0 \), monthly appreciation \(- \mu \), monthly risk \(- \sigma \)),
borrower characteristics (composed of his/ her income \(- y \)) and underwriting constraints
(Confidence Level \(- x\% \), Income multiplier \(- b \)).

(i) **Asset Value Constraint:** Here too, the financier ascertains that the outstanding loan \((Q_t) \) is (at
least) fully collateralized by the underlying home value at an x% confidence level. That is,

\[\text{Max. Probability (Ln(P_t) – Ln(Q_t))} \geq \frac{x}{100} \]

(in t)

The above condition yields a safety margin, which is a multiple "α" of the risk (σ√t) and helps us evaluate the Cooperative Dues (CD = (S / (T1 + T2 + 1))) in conjunction with the time of joining the Cooperative (-T1).

\[\frac{\ln(P_t) - \ln(Q_t)}{\sigma \sqrt{t}} \geq \alpha \]

\[(\text{in t}) \]

⇒ Max. \[[\ln(P_t) - \ln(Q_t)] \geq \alpha \sigma \sqrt{t} \]

\[(\text{in t}) \]

This implies that at the optimum time \(t^* \) (\(t^* \in (0, T) \)):

\[\frac{1}{P_{t^*}} (\frac{\delta P_{t^*}}{\delta t^*}) - \frac{1}{Q_{t^*}} (\frac{\delta Q_{t^*}}{\delta t^*}) \geq \frac{\alpha \sigma}{2 \sqrt{t}} = \left(\frac{\alpha}{2} \right) \left(\frac{\sigma \sqrt{t}}{t} \right), \text{ and} \]

\[Q_{t^*} \leq P_{t^*} (e^{-\alpha \sigma \sqrt{t^*}}) \]

(5c)

Here too, the first and second term of the LHS of Equation (5b) represent the rate of change of value of a home minus that of a mortgage. The combination again estimates the rate of change of equity. Equation (5b) also implies that for an optimum the combined LHS terms be greater than or equal to the product of \(\left(\frac{\alpha}{2} \right) \) and the rate of increase in risk of a home \(\left(\frac{\sigma \sqrt{t}}{t} \right) \).

For an appreciating formal home, the first term on the LHS is positive, while the second term (for an amortizing mortgage) is negative. The combination of both LHS terms is positive, as it represents a positive term minus a negative term. This again yields a non-binding inequality with a trivial solution \(t^* > 0 \) (\(\forall (\alpha \sigma) >> \mu >> \sigma^2 \)). This also results in an LTV of 100%, thereby aggravating moral hazard on the part of home owners, as they have no capital at risk. Thus, to alleviate moral hazard, we restrict the LTV ratio to an equivalent function of safety margin of \(e^{-\alpha \sigma} \). This yields:

\[Q_0 \leq P_0 (e^{-\alpha \sigma}) \]

(11)

Substituting the value of \(Q_0 \) from Equation (9a) in Equation (11), we derive:

34 These conditions hold true during normal times. However, when formal home prices constitute an asset bubble, then Equations (5b) and (5c) may not hold true.
\[S \left(\frac{T_1 + 1}{T_1 + T_2 + 1} \right) \geq P_0 (1 - e^{-\alpha \sigma}) \]

\[\Rightarrow \left(\frac{S}{P_0} \right) \geq \left(\frac{T_1 + T_2 + 1}{T_1 + 1} \right) (1 - e^{-\alpha \sigma}) \]

\[\Rightarrow \left(\frac{S_{\text{Min}}}{P_0} \right) = (1 - e^{-\alpha \sigma}) \left(\frac{T_1 + T_2 + 1}{T_1 + 1} \right) \]

Equation (9e) states that \(S_{\text{Min}} < P_0 \). This implies that \(\left(\frac{S_{\text{Min}}}{P_0} \right) < 1 \). Substituting this in Equation (11c), we derive:

\[(1 - e^{-\alpha \sigma}) \left(\frac{T_1 + T_2 + 1}{T_1 + 1} \right) < 1 \]

\[\Rightarrow T_1 > T_2 (e^{\alpha \sigma} - 1) - 1 \]

Finally, substituting the value of \(\left(\frac{S_{\text{Min}}}{P_0} \right) \) from Equation (11c) in Equation (9d), we derive:

\[\left(\frac{1}{T_3} \right) = \frac{1}{T_2} (1 - \left(\frac{S_{\text{Min}}}{P_0} \right)) = \left[\frac{e^{-\alpha \sigma}}{T_2} - \frac{(1 - e^{-\alpha \sigma})}{(1 + T_1)} \right] \]

(ii) **Income Constraint**: The cooperative ascertains that the borrower has adequate income \(y \) to meet his/her mortgage commitments comprising of both the Cooperative Dues as well as the Regular Principal Payments \(\left(\frac{S}{T_1 + T_2 + 1} + \frac{P_0}{T_3} \right) \). This implies curtailing the commitments such that they are a multiple \(b \) of income of borrower. That is, \[\frac{\text{Income of Borrower (y)}}{\text{Mortgage Commitments (CD+RPP)}} \geq \text{Income Multiplier (b)} \]

\[\Rightarrow \left\{ \frac{y}{S \left(\frac{T_1 + T_2 + 1}{T_1 + T_2 + 1} + \frac{P_0}{T_3} \right)} \right\} \geq b \]

\[\Rightarrow y \geq b(S \left(\frac{T_1 + T_2 + 1}{T_1 + T_2 + 1} + \frac{P_0}{T_3} \right)) \]

Substituting the values of \(\left(\frac{S_{\text{Min}}}{T_1 + T_2 + 1} \right) \) and \(\left(\frac{1}{T_3} \right) \) from Equations (11c) and (11e), we derive:

\[y \geq \frac{b P_0}{T_2} (e^{-\alpha \sigma}) \]
\[T_2 \geq \frac{b P_0}{y} (e^{-\sigma}) \quad (12d) \]

(iii) **Efficiency Constraint:** Finally, the cooperative ascertains that the discounted value of all payoffs should be greater than or equal to the net amount financed without interest \((Q_0)\). That is,

\[
\sum_{i=T_1}^{T_2} \left(\frac{S}{T_1 + T_2 + 1} \right) (\gamma^i) + \sum_{i=T_1}^{T_3} \left(\frac{P_0}{T_3} \right) (\gamma^i) \geq Q_0
\]

(13)

Since the summation signs (in the above equation) involve terms in geometric progression, they can be simplified further as follows:

\[
\left(\frac{S}{T_1 + T_2 + 1} \right) (\gamma^{-T_1}) \left[\frac{1 - \gamma^{T_1+T_2+1}}{1 - \gamma} \right] + \left(\frac{P_0}{T_3} \right) \left[\frac{1 - \gamma^{T_2}}{1 - \gamma} \right] \geq Q_0
\]

(13a)

It should be noted that Equations (13) and (13a) (with equality signs) are akin to Equation (3) in the formal mortgage. That is, when Equations (13) and (13a) are satisfied with an equality sign, then a cooperative mortgage is *pareto-neutral* to its formal counterpart. However, when they are satisfied with an inequality sign, then a cooperative mortgage is *pareto-superior* to a formal mortgage. This implies that the cooperative is able to generate surplus capital to sustain its growth. In contrast, if they are violated, it implies that the mortgage is *pareto-inferior* and that the cooperative's capital base is being depleted. This efficiency of a cooperative is contingent on the characteristics of a home, the borrower and the underwriting standards adopted (as elaborated below).

The above Equations (13) and (13a) also distinguishes the home financing cooperative from a ROSCA, as one group of members do not benefit at the expense of the others. It is the cooperative, which either benefits or confers benefits to others based on the NPV of cash flows.

Thus, the model can be solved for \([T_1, T_2, T_3, S_{\text{Min}}, Q_0]\) given \([P_0, \mu, \sigma, \alpha, y, b, \text{and } \gamma]\) as follows:

First, we evaluate \(T_2\) using Equation (12d), rounding it off to the nearest integer.

Next, we evaluate \(T_1\) using Equation (11d), rounding it off to the nearest integer.

Next, we evaluate \(T_3\) using Equation (11e), rounding it off to the nearest integer.

Next, we evaluate \(S_{\text{Min}}\) using Equation (11c).

Next, we evaluate \(Q_0\) using Equation (9a).
Finally, we verify the above endogenous values by ascertaining that Equation (13a) holds true.

III.b: Illustrative Examples.

Example 1 [Cooperative Home Mortgage is *pareto-superior* to a Formal Mortgage]:

We retain the same exogenous parameters selected in Example 1 of the formal mortgage (Section II.b). That is, $P_0 = $100,000, $\mu = 5.695\%/year = 0.4746\%/month$, $\sigma = 14.845\%/year = 4.2854\%/month$, $x = 99.9999\%$, $\alpha = 4.75367$, $y = $2500/ month, Income Multiple (b) = 3.3333, and $r = 5\%/year = 0.42\%/month$.

Since the solutions for T_1 and T_2 involve inequalities, i.e., $T_1 > 23.628$ months (Equation 11d) and $T_2 \geq 108.7595$ months (Equation 12d), a unique mortgage solution is infeasible. We therefore depict two solutions to illustrate our point.

Solution (i):
Here we select, $T_1 = 24$ months (i.e., 2 years) and $T_2 = 109$ months (i.e., 9 years, 1 month). This implies $T_3 = 8984$ months (from Equation 11e), $S_{\text{Min}} = $98,786.73 (from Equation 11c), $Q_0 = $81,569.64 (from Equation 9a), Cooperative Dues (CD) = $737.21/ month (from Figure 3), Regular Principal Payment (RPP) = $11.13/ month (from Figure 3), Total monthly payments (CD+RPP) = $748.35, Discounted value of all payoffs = $84,833.54 > Q_0 = $81,569.64. This validates the efficiency constraint, i.e., Equation (13a).

Solution (ii):
Here we select, $T_1 = 30$ months (i.e., 2 years, 6 months) and $T_2 = 109$ months (i.e., 9 years, 1 month). This implies $T_3 = 651$ months (from Equation 11e), $S_{\text{Min}} = $83,233.88 (from Equation 11c), $Q_0 = $81,569.64 (from Equation 9a), Cooperative Dues (CD) = $594.53/ month (from Figure 3), Regular Principal Payment (RPP) = $153.61/ month (from Figure 3), Total monthly payments (CD+RPP) = $748.14, Discounted value of all payoffs = $85,063.41 > Q_0 = $81,569.64. This too validates the above efficiency constraint.

Example 2 [Cooperative Home Mortgage is *pareto-inferior* to a Formal Mortgage]:

This example illustrates the contrary case where the cooperative's capital base is depleted. That is, the cooperative mortgage is *pareto-inferior*. Here too, we retain the same exogenous parameters selected in the above Example 1 with the exception of annual income of prospective homeowner (y), which is selected as $20,000/ year = $1666.67/ month. This yields $T_1 > 36.06$ months (from Equation 11d) and $T_2 \geq 163.14$ months (from Equation 12d). Here the efficiency
constraint is violated in the first solution given below. To restore efficiency, a high value of T_1 along with relaxation of the underwriting (income) constraint (of Equation 12d) is needed. This is illustrated in our second solution illustrated below.

Solution (i):
Here we select, $T_1 = 37$ months (i.e., 3 years, 1 month) and $T_2 = 164$ months (i.e., 13 years, 8 months). This implies $T_3 = 8087$ months (from Equation 11e), $S_{\text{Min}} = 97,971.91$ (from Equation 11c), $Q_0 = 81,569.64$ (from Equation 9a), Cooperative Dues (CD) = $485.01/ month (from Figure 3), Regular Principal Payment (RPP) = $12.37/ month (from Figure 3), Total monthly payments (CD+RPP) = $497.37, Discounted value of all payoffs = $78,935.48 < Q_0 = 81,569.64. This violates the efficiency constraint (i.e., Equation (13a)) indicating the depletion of the capital base of the cooperative.

Solution (ii):
To restore efficiency, a high value of $T_1 = 72$ months (i.e., 6 years) is needed. Here we opt for $T_2 = 159$ months (i.e., 13 years, 3 months), relaxing the income constraint imposed by Equation (12d). This yields $T_3 = 396$ months (from Equation 11e), $S_{\text{Min}} = 59,835.55$ (from Equation 11c), $Q_0 = 81,172.43$ (from Equation 9a), Cooperative Dues (CD) = $257.91/ month (from Figure 3), Regular Principal Payment (RPP) = $252.53/ month (from Figure 3), Total monthly payments (CD+RPP) = $510.44, Discounted value of all payoffs = $81,210.91 > Q_0 = 81,172.43. This restores efficiency to the system, i.e., validates Equation (13a).

In general, we observe the violation of the efficiency constraint for (i) high values of home (P_0) or income multiplier (b); or (ii) low values of income (y) or risk (σ) or confidence level ($x\%$). Numerical illustrations of these are available from the authors upon request. It is imperative that the management of the cooperative structure their portfolio (around mortgages) which effectively generates surplus capital. Regulations such as the Community Reinvestment Act (CRA) of 1977 (in the U.S.) may necessitate that the cooperative underwrite some pareto-inferior mortgages in addition to the pareto-superior ones to sustain internal growth.35

Contrasting the above solutions with the formal mortgage derived in Section II.b, we realize

35 Currently, credit unions in the U.S. are not subject to CRA (1977), as their field of membership structure ensures that funds flow back to the community from where they take deposits.
the following:

(i) The cooperative home mortgage is marginally more efficient allocatively, as it yields an initial loan amount greater than that of the formal mortgage.\(^{36}\) This is in spite of the fact that both mortgages are subject to similar asset value constraints (Equations (5e), (9a) and (11c)). Furthermore, despite the higher initial outlay, the cooperative mortgage still involves marginally less total monthly payments with lower tenure. This seems contrary to intuition, as both mortgages face similar income constraints depicted by Equations (6b) and (12b) respectively. This discrepancy is resolved from the differences in profile of both mortgages (linear versus concave), where one is liable for principal payments (for cooperative along with its associated dues), while the other is liable for both principal and interest (for formal mortgage). This implies that a cooperative mortgage is less onerous than a formal mortgage.

(ii) The linear lien profile of a cooperative home mortgage (in contrast to the concave profile of a formal fixed rate mortgage) helps in building up an "equity cushion" at a faster pace and thus makes it less prone to default. This is attributed to the fact that a linear profile makes the cooperative lien less likely to intersect the convex profile of the asset value function (in a poor state of economy) in contrast to the concave profile of a formal mortgage (see Figures 4 and 2). This helps the cooperative mortgage to avoid the region of negative equity better than a formal mortgage, thus avoiding defaults.

(iii) The efficiency of a cooperative home mortgage is contingent on the characteristics of a home (comprising of initial price \(P_0\), underlying risk \(\sigma\)), borrower characteristics (comprising of income \(y\)) and underwriting constraints (comprising of confidence interval \(x\%\), and income multiplier \(b\)). The cases with low initial home price, high income, low income multiplier, high confidence level and high risk constitute the instance cited in Besley et al. (1994) and Hart and Moore (1998) where a ROSCA (in our case the cooperative mortgage) is pareto-superior over formal credit markets (in our case the formal mortgage). However, this is reversed for high initial home price, low income, high income multiplier, low confidence level and low risk. It is imperative for the manager of a cooperative to structure its portfolio by: (i) catering to the disadvantaged (with low income) who aspire to purchase a home (with low initial value and medium to high risk), and (ii) using the following underwriting constraints: medium income multiplier and high confidence level. This would suffice in generating a surplus necessary for sustaining its internal growth and ultimately improving the economic status of the underprivileged.

\(^{36}\) This ignores the Solution (ii) of Example 2 obtained by infringing on the underwriting constraint of home multiplier.
III.c: Extension of the Model to the Case of Inflation.

Changes in the housing stock during inflationary periods leads to changes in the rate of appreciation (μ) and the risk of it (σ), as stated in Section II.b. This leads to minor changes in the loan to value ratio. Changes in the interest rates (and discount factor through the Fisher Effect) impact on the left hand side of Equation (13a), requiring meticulous selection of T_1, T_2 and T_3 to ensure its satisfaction. Nonetheless, for less drastic changes in the inflation rate, the solution is still feasible (unlike the case of formal mortgage) with minor changes in the LTV and periods (T_1, T_2). Thus, inflation may not drastically impact a cooperative, as the cost of borrowing offsets the benefit of lending.

III.d: Extension of the Model to the Case of Prepayment.

Prepayment of a cooperative home mortgage implies paying off the balance of the mortgage defined by Equation (9) prior to its real tenure T_2. That is at a tenure $T'_2 < T_2$. This impact on its relative efficiency with respect to formal mortgages (defined by Equation (13a)) as described below.

Prepayment leads to an enhancement of the NPV of both the cooperative dues (CD) along with that of the regular principal payments (RPP). This is due to the acceleration of both payments which originally cancel each other in sum at T_2. This illustrates that prepayment is preferred here, as it allows the cooperative to recoup its capital lent at zero interest earlier. Thus, in the context of prepayment a cooperative home mortgage is more efficient than a formal one.

The above result assumes that prior to the prepayment, the cooperative financing package is either equally or more efficient than the formal mortgage. If this is not true, then adjustment would have to be made with a high value of T_1 and relaxation of the income constraint (Equation 12d) to make it equally (or more) efficient with respect to formal mortgages, as illustrated in Example 2 (Solution (ii)).

IV CONCLUSION AND POLICY IMPLICATIONS

The formal housing finance system has failed the disadvantaged in both the developed as well as the developing world. This paper proposes the establishment of a special circuit in the form of a cooperative by integrating the two streams of the literature (comprising of mortgage design and ROSCA/ ASCRA). This is a precursor to U.S. Credit Unions (German Cooperative Banks) and U.S. Mutual Savings and Loans (U.K. Building Societies), where the prospective homeowner simultaneously borrows and lends to it such that the net contractual interest rate is
This form of financing is a special case of ASCRA and is practiced in a limited way by clans in Oman. It is consistent with the prognosis of King and Levine (1993) and Levine (1997), as it facilitates in mitigating risk and reducing transaction costs for the underprivileged masses. We implicitly assume that the cooperative has access to seed funding for its incorporation through either a charity or a mutual savings institution (such as a building society/credit union/mutual savings bank) or governmental agency or a non-governmental agency (NGO) or a supra-national agency like the World Bank. Once it is established, it needs to be managed carefully for it to be self-sustaining.

We assume the existence of an information architecture and optimally price mortgages (in the spirit of Baltensperger (1978)) to contrast the one made by the housing finance cooperative with that of a formal intermediary in the prime sector. This is accomplished in a more scientific way instead of using the ad-hoc credit rationing constraints currently used by banks. Our efforts yield the following four key results.

First, a cooperative home mortgage is allocatively more efficient than a formal mortgage, as the loan amount is marginally higher. This is despite the fact that both are subject to similar asset value constraints. However, a cooperative mortgage involves marginally lower total monthly payments with less tenure. This is also in contrast to the fact that both are subject to similar income constraints. A cooperative mortgage is thus less onerous than a formal mortgage, as its linear profile necessitates principal payments in contrast to a formal mortgage which necessitates principal plus interest.

Second, the linear lien profile of a cooperative home mortgage also makes it less prone to defaults in contrast to the concave profile of a formal mortgage. This stems from the fact that a cooperative mortgage builds equity faster for the home owner, leaving a larger safety net for the financier. Thus, we conclude that a cooperative mortgage is a better alternative than a formal mortgage, as it has the potential of reducing macroeconomic volatility in accordance with the prognosis of Sheng (1997) and Renaud (2005).

Third, a housing finance cooperative performs better than its formal counterpart during periods of volatile interest rates (stemming from changes in inflationary expectations). This is attributed to the endogenous use of leverage, where the volatility in interest rates marginally impacts on the LTV and the tenure instead of pricing out the prospective homeowner due to the increase in affordability (in case of the formal mortgage).

Finally, the overall efficiency of a cooperative is contingent on the underlying characteristics of a home, that of the borrower and its underwriting standards. For some values of these parameters, a cooperative constitutes a special case reported in Besley et al. (1994) and Hart and
Moore (1998), which is *pareto-superior* to the formal mortgage. However, for other values of the above parameters, a cooperative is *pareto-inferior* to a formal mortgage. It should be noted that our analysis does not incorporate the relatively low administrative, default and transaction costs embedded in the two contrasting mortgages (see Buijs, 1998; and Smets, 2000). Furthermore, there is no prepayment cost in a cooperative mortgage as opposed to a formal mortgage, where it results in a higher interest rate or a higher initiation fee (see Hall, 1985). If we were to incorporate these lower costs, a cooperative would still dominate in terms of its efficiency. This competitive advantage of cooperatives (in the form of credit unions) in the U.S. (despite their handicap described below) has subjected them to intense pressure from the banking industry, which threatens to contain its growth through legal and political means (see Wysocki Jr., 2006). Nonetheless, a diligent manager of the cooperative should underwrite a portfolio which internally generates a capital surplus crucial for sustaining its growth. This implies: (i) catering to the disadvantaged (with *low* income) who aspire to purchase a home (with *low* initial value and *medium* to *high* risk), and (ii) using the following underwriting constraints: *medium* income multiplier and *high* confidence level.

The competitive advantages of the housing finance cooperative (as elaborated above) outweigh its disadvantages ensuing from its (i) illiquidity (as cooperatives are forced to hold the mortgages until maturity, in contrast to the formal intermediaries, who can securitize them in the secondary markets), and (ii) inability to raise funds quickly due to inordinate demand (as charity funded cooperatives do not have the same ability as formal intermediaries in raising funds and are compelled to do so by appealing to their constituents, and meticulously managing its portfolio). Nonetheless, a cooperative serves as an exemplary special circuit that does not depend on government subsidies, and manages available resources more efficiently with reduced risk (in contrast to its formal counterpart). We therefore recommend it to be adopted globally to help the disadvantaged gain from its economic benefits (see Renaud, 2005). The ensuing benefit of homeownership will help in elevating the economic status of the underprivileged, fostering investment in local amenities and social capital, thus enhancing the quality of the community and stimulating economic development (see Malpezzi, 1990; Buckley, 1994; DiPasquale and Glaeser, 1999; and Haurin et al., 2002).

37 The reduction in default costs in a cooperative stems from alleviation of adverse selection and moral hazard as illustrated in Buijs (1998) and Smets (2000).

38 The pricing parameters (of a cooperative mortgage as demonstrated by Equations (12–12d) and (13–13a) in Section III) are impacted by imposition of service fees. These are available from the authors upon request.
REFERENCES

Authers, J., 2007, Markets are facing some home truths, Financial Times (March 31).

Case, K.E., 2000, Real Estate and the Macroeconomy, Brooking Papers on Economic Activity 2, pp. 119-162.

Economist, 2007b, Finance and Economics: Before the Fall; Buttonwood, (February 17), p. 81.

Emmons, W.R., and Mueller, W., 1997, Conflict of Interest between Borrowers and Lenders in Credit Cooperatives: the Case of German Cooperative Banks, Working Paper, Federal Reserve Bank of St; Louis, St. Louis, MO.

Glaeser, E.L., 2000, Comment and Discussion: Real Estate and the Macroeconomy, Brooking Papers on Economic Activity 2, pp. 146-150.

Knight, R., 2007, Home Loans are more Expensive for Minorities, Financial Times, (March 16), p. 7.

Patel, S., 1999, Interpreting Gender and Housing Finance in Community Practice: The SPARC, Mahila Milan and NSDF experience, in: Datta, K. and Jones, G.A. (Eds.), Housing and

